Axonal excitability and conduction alterations caused by levobupivacaine in rat.
نویسندگان
چکیده
In this study, effects of the long-acting amide-type local anesthetic levobupivacaine on axonal conduction and excitability parameters of the rat sciatic nerve were thoroughly examined both in vitro and in vivo. In order to deduce its effects on isolated nerve conduction, compound nerve action potential (CNAP) recordings were performed using the suction method over sciatic nerves of Wistar rats before and after administration of 0.05 % (1.7 mmol L-1) levobupivacaine. Levobupivacaine caused complete CNAP area and amplitude depression by blocking conduction in a time-dependent manner. To assess the influence of levobupivacaine on in vivo excitability properties, threshold-tracking (TT) protocols were performed at sciatic nerves of rats injected with perineural 0.05 % (1.7 mmol L-1) levobupivacaine or vehicle alone. Charge-duration TT results revealed that levobupivacaine increases the rheobase and decreases the strength-duration time constant, suggesting interference of the anesthetic with the opening of Na+ channels. Twenty and 40 % threshold electrotonus curves were found for both groups to follow the same paths, suggesting no significant effect of levobupivacaine on K+ channels for either the fastest or relatively slow conducting fibers. Current-threshold relationship results revealed no significant effect on axonal rectifying channels. However, according to the results of the recovery cycle protocol yielding the pattern of excitability changes following the impulse, potential deviation was found in the recovery characteristics of Na+ channels from the absolute refractory period. Consequently, conduction blockage caused by levobupivacaine may not be due to the passive (capacitive) properties of axon or the conductance of potassium channels but to the decrease in sodium channel conductance.
منابع مشابه
Age-Dependent Regeneration by Using Electromyographical Study Foliowing Sciatic Nerve Injury in Rat
Purpose: There are extensive evidences that show axonal processes of the nervous system (peripheral and/or central) may be degenerated after nerve injuries. Axonal regeneration is relation to various factors. In this investigation we decided to evaluate the effects of nerve regeneration age-dependent on injured rat sciatic nerv. Materials and Methods: For this study, the right sciatic nerve of...
متن کاملActivity-dependent modulation of axonal excitability in unmyelinated peripheral rat nerve fibers by the 5-HT(3) serotonin receptor.
Activity-dependent fluctuations in axonal excitability and changes in interspike intervals modify the conduction of trains of action potentials in unmyelinated peripheral nerve fibers. During inflammation of a nerve trunk, long stretches of axons are exposed to inflammatory mediators such as 5-hydroxytryptamine [5-HT]. In the present study, we have tested the effects of m-chlorophenylbiguanide ...
متن کاملEffects of membrane polarization and ischaemia on the excitability properties of human motor axons.
Multiple nerve excitability measurements have been proposed for clinical testing of nerve function, since excitability measures can provide evidence of altered axonal membrane properties and are complementary to conventional nerve conduction studies. An important determinant of excitability is membrane potential, and this study was undertaken to determine the changes in a range of excitability ...
متن کاملAntibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملn5-STZ Diabetic Model Develops Alterations in Sciatic Nerve and Dorsal Root Ganglia Neurons of Wistar Rats
One experimental model of diabetes mellitus (DM) similar to type II DM, called n5-STZ, is obtained by a single injection (via i.p.) of streptozotocin (STZ) in the 5th day of life of newborn rats. The present investigation aimed to characterize alterations in excitability of rat peripheral neurons in n5-STZ model. n5-STZ DM was induced, and electrophysiological evaluation was done at 12th week o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta pharmaceutica
دوره 67 3 شماره
صفحات -
تاریخ انتشار 2017